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Universality of dynamic scaling for avalanches in disordered Ising systems
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Dynamic scaling for driven disordered systems is investigated in some disordered Ising models. Using
Monte Carlo simulation, we find that avalanches in both random-field and random-bond Ising models follow
dynamic power-law scaling in short times, and the scaling relations are universal for the systems studied. The
probability distribution of the dynamic scaling exponéhis found to have two peaks centeredéatand 6, .

The short-time dynamic exponemt is invariant and universal for all avalanches while the expor@ignt
depends on the strength of disorder. The analytical result for the early stage evolution of breakdown process in
the random-field Ising model is obtained using mean-field approximation. Short-time dynamic scaling is also
confirmed.
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[. INTRODUCTION the critical value. The scaling exponents are related to the
critical exponents of disorder-driven phase transitions in the
Effect of disorder on phase transition has attracted a lot o§ystems without applied fieldl0,11]. However, those scal-
attention in the past two decadg$s—3]. Because defects ing exponents strongly depend on disorder strengths, initial
cause many local energy minima in the free energy landscapstates, and driving rates; and there is no universal scaling
of the system, they play important roles in phase transitionselation for these static and dynamic exponéf. Further-
and critical phenomena. For example, impurities can changaore, most of the experiment@—8] and theoretica]9—11]
the critical temperature and the critical behaviors, or comworks on Barkhausen avalanches in disordered ferromagnets
pletely destroy the order phase, i.e., disorder-induced phadeve focused on their stationary or metastable behaviors,
transition[3]. When disorder is weak, the energy barrierse.g., the statistical distribution of signal strengétvalanche
among local energy minima may be low and disorder can bsize and duration time(avalanche time of Barkhausen
treated as a perturbation to the configuration space. Whemoises. There is little knowledge about the dynamical prop-
disorder is strong, the energy barriers are so high that therties of Barkhausen avalanchd®,13. For example, how
system is trapped in the metastable configurations. Thermalvalanches evolve remains unknown and how the driving
fluctuation cannot activate the system from the metastableate of applied field affects the avalanche kinetics has not
state in finite time scales. In this case, theoretical and simueeen clarified in most of the theoretical works3]. The
lation treatments to the disorder-induced phase transition anguestion concerning the nature of the dynamics of
critical phenomena have encountered tremendous difficultieBarkhausen avalanche process, especially whether different
[3]. To avoid these difficulties, driven disordered system atvalanches have different dynamic behaviors or they could
zero temperature, i.e., disordered system driven by an extebe described by the same universal dynamic scaling, has not
nal field, has been employed and extensively stugief]. been clear so far.
Avalanches are usually observed during the field-driven In a recent study14] on a two-dimensional2D) RFIM,
phase transition in disordered system. In some well-definede find that the largest avalanche grows with power law in
models, such as random-field Ising mod@$IM), the criti-  time when the system parameters are tuned to their critical
cal exponents obtained by scaling for avalanches are foundalues, i.e., at the critical poinD(. ,H.) of the model, where
to be consistent with those determined by thermal equilibD. is the critical disorder strength of the random field &hd
rium critical scaling. is the critical applied field that triggers the largest avalanche
One of the well-known examples of avalanches in driven11]. When the strength of disord€ is varied belowD,
disordered system is the Barkhausen jump during the maghe largest avalanche is found to evolve in two distinct
netization reversal process. When disordered ferromagnestages. In short times, it behaves like a diffusive process,
are subjected to a slowly varying magnetic field, the avawhile at late times the avalanche shows nucleation and
lanches of local domain reversals form, which lead to thegrowth behavior that can be described by the kinetic theory
Barkhausen jumps in the magnetization curve. Experimentadf first-order phase transitiori4].
results have shown that the avalanches of domains with dif- There are two important issues in the previous work that
ferent sizes are observed to obey scale invariance in spacemain unresolved for the dynamic scaling of avalanches in
time, and frequency domain. The distribution of avalanchedriven disordered systems. The first one is whether the dy-
sizes, the duration times and the power spectral density shomamical scaling is universal in higher dimensions and for
power-law behavior§6—8]. In theoretical studies, some of systems with quenched-in disorder, such as the models with
the disordered Ising models that are employed to describe th@andom interactions. Second, it is of great interest for us to
Barkhausen noise, have also demonstrated that the distriblook at the dynamic behavior of all avalanches other than
tion of avalanches in hysteresis loop exhibits statistical scalenly the largest one. Specifically, we need to address the
ing behaviors when the strength of the disorder is tuned tdollowing question: Whether the dynamics of avalanches of
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all sizes is homogeneous or heterogeneous, i.e., whether all P(70)~1,°, 2
avalanches evolve like the largest one.
These unanswered questions provide the major motivation A(f)~f~¢,

for this work. Our previous work gave a limited account of

the effects of disorder on the dynamic process in a 2Dwheres and 7, are avalanche size and duration time respec-
random-field Ising mod€l14]. The purpose of this paper is tively. A(f) is the power spectral density of avalanche sig-
to give more general and more extensive answers to theal.a, b, andc are the scaling exponents. On the other hand,
aforementioned questions using different model systems antthe critical scaling for the driven disordered system has the

Monte Carlo simulations. following relations[10]:
This paper is organized as follows. We shall briefly re-
view model systems for driven disordered system and the AM~(D.—D)*",
dynamic scaling for avalanches in the following section. In 3
Sec. Ill, we demonstrate through numerical simulations that (to)~(De—D) ™",

the dynamic scaling is universal in higher dimensions and for ) . ) o

the disordered model systems in which the hyperscaling re¥hereAM is the avalanche size axth) is the duration time
lation is not valid[11]. In Sec. IV, we investigate the dy- Of the largest avalanche during the switching process.
namic heterogeneity of avalanches in the random-bond Isin? We need to point out that Eq2) and (3) are the results
model (RBIM). In Sec. V, analytical results are obtained by fom stationary or metastable scaling. The scaling is ana-

using mean-field approximation to RFIM. The last sectionlyzeéd when the avalanches remain unchanged or metastable.
summarizes the results. However, nonequilibrium dynamic scaling for avalanches

could be more suitable to describe the driven disordered sys-
tem and can be derived from the finite-size scaling hypoth-

Il. DYNAMIC SCALING FOR DRIVEN DISORDERED esis[15]. Based on this finite-size scaling relation, the time-
SYSTEMS dependent avalanche jump(t)=[M(t)—M.]/2 is shown
We consider a coarse-grained Ising model with quenchetP Satisfy the following relation:
disorder, m(L,t)~L A (LIE), @
~ where M(t)=((2S))/LY is the total magnetization, and
H=_<Z:> ‘JijSiSj_Ei: hiSi—HEi S, (1) (O=(ES)/L) g
]

(---) denotes average over the random-field configurations.
M. is the magnetization at the critical poinD{,H.). L is

the lattice size and(t) is the nonequilibrium spatial corre-
lation length of the flipped spins at timteF is the scaling

mogeneous external magnetic fieltdis an uncorrelated ran- fur_lctiog. Fl_riom E}q'(g)' we.foundl[1.4] th?t ﬁt tlhe critical
dom field which has a Gaussian distributidfi;)=0 and Ipom:] (e, hC),t : € ynélmlctﬁvof ulFon. ort el' argelstt_ava-.
<h(X)h(X’)>:2D5(X_X’). ancne In snort tmes obeys the 1ollowing scaling relations:

whereS ==*1 are spin variables angi) denotes the sum-
mation extending over all nearest-neighbor spthss a ho-

In this work, we consider two variations of the lIsing (s(t)y~tld-BInIz_to (5)
model represented by E@l): (a) random-field Ising model
and(b) random-bond Ising model. For the random-field Ising gq
model, we choosé;;=J, andh; is the random field as de-

scribed above. For the random-bond Ising model, we choose aln(s(t)) y
h;=0. J;; are the Gaussian random variables with the mean — | t "2 (6)
valueJ and standard derivatioD. In both modelsH andD r=0

are in units of). The temperatures in both random-field and
random-bond Ising systems described by @g.are kept at
zero.

In the system described by E(), if the applied fieldH
(e.g., magnetic fieldis swept betweern-~ and —, its con-
jugate order parametdf (e.g., magnetizatiordoes not vary
smoothly from+1 to —1. Instead, many avalanche processes il UNIVERSALITY OF DYNAMIC SCALING
can be observed during the switching of order parameter. FOR AVALANCHE EVOLUTION
There is a critical disorder strengih, that characterizes this Equations(5) and(6) are confirmed by the recent simula-
driven disordered system. Whel>D., there are only tjons of a 2D random-field Ising mod¢l4]. The critical
small avalanches; while @=<D., there exists an infinite  exponentss, v, z, and the critical valu® obtained from the
avalanche under the critical applied fiet},. The equilib-  gynamic scaling are found to be consistent with those deter-
rium distributions of avalanches are found to obey themined from the stationary scaling relatidi&gs.(2) and(3)].

wherer=(D,—D)/D.. s(t)=L%m(t) is the avalanche size.

B andv are the equilibrium critical exponents of the system.

z is the dynamical critical exponent argds a new dynamic
exponent that also characterizes the dynamics of the system.

power-law scaling relations & =D [9,11], The new dynamic exponertt is equal to[d— B/v]/z, or
l/ovz [11], where exponend is defined from the spanning
P(s)~s™2, cluster. As it is known, the hyperscaling relatioi- 8/v
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FIG. 2. Determination oD (%) and critical exponent in 3D
RFIM. D¢(L) is the critical strength of disorder in a finite-size
system. The solid line is a linear fit.

a 3D random-field Ising model and a 2D random-bond Ising
model. These systems provide the typical examples repre-
senting two scenarios for our questions. The 3D RFIM is
known for not having the hyperscaling relation and 2D
RBIM has different disordered nature, e.g., spin glass, com-
pared with the RFIM.

Additional advantages can also be gained from these two
model systems. Since the exponents and critical phenomena
of these systems are investigated previoydl§,11] using
stationary scaling relatior€gs. (2) and (3)], we can com-
pare these known results with those obtained from our dy-
namic scaling. This direct comparison could provide an ad-

FIG. 1. Dynamic and stationary critical scaling for the largestditional justification for the universality of the dynamic
avalanche in a three-dimensional random-field Ising model. Systercaling in the two model systems.

size isL=128. (a) Evolution of avalanches at different disorder
strengths. The dashed line is the best power-law fit. The plots are in
log-log scale.(b) The duration time(t,) of the largest avalanche,
AM of the largest avalanche, and the initial magnetizatigrat the

largest avalanche.

A. Algorithms for simulation study

We use Monte Carlo simulations in our numerical study
of the two model systems. Both systems are kept at zero
temperature. The algorithms used in the current work are

=1/ov, as well as possible disorder-driven phase transitionsdescribed below.

are found to exist in 2D RFINI11]. One of the questions that

For the systems governed by Ed), all spins are updated

naturally arise from these results vghether the dynamic simultaneously. A spin will flip if its local fieldf;=%J;;S;
scaling observed i2D RFIM is universal in different models +h;+H changes sign. The external field is decreasedHy
of disordered systems where the hyperscaling relation doeand then is fixed to drive the avalanches until the system

not hold

reaches a metastable state. The varying rate of magnetic field

We believe that the dynamic scaling and scaling relatiorcan be measured yH. If dH is fixed throughout the mag-
0=[d— B/v]/z are universal for Ising systems with uncorre- netization reversal procedd,is a linear varying field. I1dH
lated impurities. The reasons are based on the following alis adjusted to be the local field of the most unstable sgin,
guments. First, Eqg5) and(6) govern the dynamics of ava- is a quasistatic driving field. Unless specified otherwise, the

lanche in short-time regime. At short time&gt) is still small

simulation results are obtained from the systems with infi-

compared with. and the spanning clusters or fractal-shapedhitely slow driving rate.

avalanches have not formed yet. Then the avalanche size To speed up the simulation, a fast algorithm similar to the
s(L,t) is scaled with system side”, and thus has nothing to sort-list algorithm[11] is used. This algorithm is not appli-
do with the spanning clusters. Second, for nonequilibriumcable to the 2D RBIM with Gaussian random bonds because

dynamic process, the finite-size scaling relatidy. (4)]

may not necessarily lead to the hyperscaling relation.
To demonstrate the above conjecture that the dynamications. The average depends on the system size. One time

scaling for avalanches in Ising-type driven disordered systerstep, or one Monte Carlo stgMCS), in the simulation is

is universal, we choose to study two different model systemsdefined as one attempt of all spin updates. When the driving

of the possibility of antiferromagnetic exchange interaction.
Physical quantities are averaged over 1000—50 000 configu-
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FIG. 3. Dynamic finite-size scaling for the largest avalanche at
D.=2.16 in 3D RFIM. The symbols are rescaled by E4). with

H=H,andD=D..
field changes, the time is reset to zero.

B. Results

1. 3D random-field Ising model

different disorder strengti® in the 3D RFIM. The best
power-law fit determines the critical valle.(L) in the finite

100 1000
t (MCS)

FIG. 4. The growth of the largest avalanche in a two-
dimensional random-bond Ising mod@D RBIM); L=1024. The

plots are in log-log scale. The dashed line is the best power-law fit.

model. Exponent®, v, z and the critical valud . obtained
from the dynamic scaling for the 2D RBIM are listed in
Table Il. As shown in Fig. 5, they are consistent with those
determined by stationary scalifd0]. From the above re-

Figure 1a) shows the evolution of the largest avalanche aSults, we can see that in both the 3D RFIM and 2D RBIM,

system. Figure (b) shows the corresponding static critical Versal-
scaling [Eq. (3)]. The critical valueD() of the infinite

system can be determined from the relation

De(L)—De(e)~L ™,

the avalanche size is shown in Fig. 3.

From the dynamic scaling of the largest avalanfigs.

the scaling relation between the new dynamic exporgent
and other critical exponent®=[d— B/v]/z, is indeed uni-

IV. DYNAMICAL HETEROGENEITY OF AVALANCHES

()

Equation(5) shows that the dynamics of the largest ava-

. - Lo . . lanche obeys a power-law scaling relation. This conclusion is
which is plotted in Fig. 2. The dynamic finite-size scaling for (e at least at the initial stage. At the poit, H,), which

is the critical point of the disorder-induced phase transition,

the relaxation time or the duration time of the avalanche

(4)—(7)], the critical exponent, », z and the critical value pecomes infinite. As shown earlier, this relation is valid for
D. can be obtained. The values are listed in Table I. Wepe 2p RFIM[14]. It is also confirmed presently in the 3D
compare these exponents &b obtained from the dynamic RpFM and 2D RBIM. Therefore, Eq5) describes the uni-

scaling with those determined from stationary scaliggs.

(2) and(3)] in 3D RFIM. As shown by the results in Table I, systems.

The avalanches in driven disordered system have different
sizes and duration times. For example, in magnetization re-
versal process, there are various Barkhausen jumps caused

Figure 4 shows the evolution of the largest avalanche aby different sizes of domains. Since E&) is based on the
different disorder strength in the 2D random-bond Ising assumption that the avalanche occurs at the critical point and

they are in fairly good agreement.

2. 2D random-bond Ising model

versal short-time dynamic scaling for the driven disordered

TABLE I. The critical exponents for the disorder-driven phase transition in 3D RFIM. The exponents and
D. determined by different methods are listed for comparison.

D¢() v Blv z 0
Dynamic scaling 2.1580.005 1.%+01 0.05-0.02 1.68-0.03 1.76-0.02
Equilibrium 2.16-0.03 0.70.1 0.02£0.02 1.69 1.78
scaling(Ref. [11])
Exact results 1 0

(Ref.[11])

&The value determined from &bz.
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TABLE Il. The critical exponents in 2D RBIM determined by dynamical scaling and static scaling.

D() z B v 0
Dynamic scaling 0.480.01 1.3:0.1 0.05-0.01 1.0:0.1 1.56:0.02
Equilibrium 0.44+0.03 1.2:0.1 0.065-0.1 1.4-0.1

scaling(Ref. [10])

the relaxation time of short-time regime is large, one may To exclude the effect of distribution functioR(J;;) on
argue that the short-time dynamics and the exporeate the distribution off, we chose an uniform distribution func-
not universal for those avalanches with small or finite sizegion of P(J;;). Again the same characteristic of the distribu-
and times. It is therefore interesting to find out what thetion P(#6) is found. The results in Fig. 6 strongly suggest that
avalanches are dll sizes the driven disordered system is dynamically heterogeneous

To resolve this issue, we measure the dynamic scalingt D<D. for the avalanche evolution under homogeneous
exponentd of each avalanche in 2D random-bond Ising external field. However, in the short-time regime or small
model. From the power-law relation, we can calculate thespatial regions, the kinetics of avalanche is homogeneous,
exponentd for an avalanche through the following relation: i.e., there exists a universal dynamic scaling expoignhat

is characteristic for the disordered systems.

Ins,—Ins;

nAl (8) V. DYNAMICS OF AVALANCHES IN MEAN-FIELD RFIM
n

Using finite-size scaling and Monte Carlo simulation in

Sec. lll, we found the universality of dynamic scaling for

avalanche process in some driven disordered systems, i.e.,
h 2D and 3D RFIM and 2D RBIM. It is important to look at
the exact results for dynamic behavior of avalanches in some
solvable disordered models. In RFIM, the kinetics of ava-
lanche can be exactly solved using the mean-field approxi-
mation.

whereAt=t,—t;, S, ands; are avalanche sizes at tinig
andt,, respectively, in an avalanche procdss=2—5 MCS
andt, is taken to be 2,/3. The valuef is measured for eac
avalanche and is averaged ovef1Q® random bond con-
figurations.

Figure 6 is the histogram plot @fat different values obD.
It can be seen that the major peak positiorgahifts from a . e ' .
small valued, to a larger valued, whenD decreases. This The smgl_e-spm-fllp kinetics for a _random-ﬂeld Ising
behavior clearly indicates that there are two kinds of dynami-mOde! described by Ed1) can be described by the master
cal evolution mechanism. F@ not far belowD_, two evo- equation
lution processes coexist. We also find that does not (¢
change whel varies, whiled, increases wheb decreases. dt P{S;} 1)
These results are consistent with the two-stage kinetics oq
fracture process observed early in the 2D RFIM model sys-

tem[14], =2 [W(~S)P{-SHO-w(S)PUS} 0], (9
]
10° - where P({S;}, t) is the probability of state {S;}
E{Sl, ey SJ ) ey Sn} and{_Sj}E{Sl, . _Sj ) ey Sﬂ}
/ L=1024
/
0.030
@
< D=0.34
0.025 —+— D=0.36 é’@,
e 0.020 [ :
w2
ﬁ_@ 0.015 [
0.010 ©
0.005 [
o L=1024, rescaled
o b0 ‘ 0.000
10 110 L . . .
t (MCS) 0 1 2 3 4
0
FIG. 5. Dynamic finite-size scaling for the largest avalanche at
D.=0.41 in 2D RBIM. The symbols are rescaled by E4). with FIG. 6. The histogram plot of the distribution of exponerat
H=H,andD=D,. different strengths of disorder in 2D RBIM;=1024.
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is the state generated by the flipping of s@inin state{S;}. Am(t)

For detailed balance condition at finite temperatiiyethe Am - lmexp—t), (16)

transition rate isv;(S;) =[1—§;f(S))]/2. {(S)) is a function

of the nearest neighbor of théh spin and can be written as \yhere AM is the Barkhausen jump in the magnetization
Jm+Hg+hg

curve andr is the characteristic time:
/ kBT} (10

—1_ 2

=1 sech( KT

Jmg+Hg—hg| |72
—seohz(%” .
For simplification, we assume that the random-field probabil- ® (17
ity distribution function is a bimodal function:

f(Sj)=tanr{

> S+hi+H

Varying the strength of disordeln, can maker—o, as
P(h;)=[&(hj—hg)+ 8(h;j+hg)]/2, (11 shown by Eq(17), which is consistent with the evolution of
the largest avalanche in the RFIM discussed in the simula-
where hy is the strength of random field. Based on mean-tion studies in Sec. Ill. Therefore when- o, from Eq.(16)
field approximation, the thermal average magnetizat®ms  we haveAm(t)«t in short times, or the breakdown process
independent of sitg and Eq.(9) leads to can be characterized by a power law in time with the expo-
nentf=1.

d
—(S)y=—(S)+(f(S)). 12
dt< )=~ (S HH(S)) (12 VI. DISCUSSION AND CONCLUSIONS

Since the observed magnetization can be writtennas In our previous investigat!on in a2b random-field _Ising
=[(S;)], where[---] denotes the average over the random-model, we observed the scaling relation for the dynamic ava-
field éonfigurations Eq(12) therefore becomes lanche process. The short-time dynamic shows universal

scaling for the largest or spanning avalandiieg. However,
tanf —————| +tanl —————

1 this study does not give the general answer to the questions
kgT kgT

d
—m=-m+

T 5 critical to our understanding of the nature of the dynamic

processes in driven disordered systems. One of these ques-
(13 tions is whether the scaling relation, as observed in the 2D
RFIM, is universal in higher-dimensional systems, and also

It is well known that forH=0 and without the random for systems without hyperscaling. To resolve these issues, we
fields, the mean-field Ising model has a second-order phase y yp 9. ’

D ) . carried out Monte Carlo simulations on two separate model
transition. The presence of random fi¢ld} may introduce a o . h di ional dom-field Isi
tricritical point to the phase diagram. To simplify the kinetics systems. One Is a three-dimensional ‘random-field Ising

. L model and another is a two-dimensional random-bond Ising
governed by Eq(13), we just consider the system that has amodel
26032(3'%? degapnhgﬁset:ﬁgzﬂgg r\év?c?glfnggs;pbqges?ét-erhbeefor The second question is whether or not the kinetics of all
PP ystem . Svalanche processes are homogeneous. Specifically, we are
the breakdown of the system, i.e., sign changenofWe

assume thatHl,, m,) is the end point of the metastable Stateinterested in finding out how avalanchesatif sizesbehave,
. sy s poir not just the largest or spanning one as we studied eathgr
in the magnetization curve for a given temperatlireelow

the critical temperature, or in other words, the spinodal point Our simulations on the avalanches in both systems, the
. P ’ , (N€ Sp POINt3K RFIM and the 2D RBIM, show that the evolution driven
The relation betweetlg and mg can be obtained from the

e A by the sweeping field indeed exhibits dynamic scaling.
equilibrium relation in Eq(13), Moreover, the dynamics of avalanches is heterogeneous, i.e.,

1 It het H IMee e+ H there are two different kinetics involved and the dynamics is
me=—= tan)—(M +tan|‘(M } affected by the disorder strengths. Two evolution mecha-
2 kgT KgT nisms contribute to the dynamic heterogeneity. At the initial

(14)  stage of evolution, the avalanche is a result of diffusive pro-
. cess, and the dynamic scaling exponent is small. Small ava-
Let Am(t) =m(t) —ms be the evolution of avalanche at |anches appear randomly throughout the system, and the ex-
H=H;. Since at the beginnindym(t) is small, Eq(13) can  ponent is universal for avalanches at short times. For the
be written as avalanche with larger dynamic scaling exponent, its growth
process is a collective phenomenon. There is a strong corre-

S A= —Am+ sechZ(JmS+ Hs+ho lation among local events during such a process. The same
dt kgT conclusions are drawn for the 2D RFIM from our early work
[14].
+sech2(JmS+ Hs— ho) }Am. (15) The dynamic scaling for avalanchesshort timesis in-
kgT deed universal for the driven disordered systems. As shown

in the 3D RFIM and the 2D RBIM, the scaling relation is
Therefore the evolution oAm(t), which is the solution to obeyed in three dimensions and in the system where the
Eq. (15), can be written as hyperscaling does not hold. In addition, the scaling exponent
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0 is independent of the avalanche size. avalanches in driven disordered system have universal short-
One of the benefits from the universality is that the expotime dynamic scaling. The dynamic scaling is valid for both
nent 6 can serve as a fingerprint to characterize the disorhigh-dimensional systems and systems without hyperscaling.

dered system. The dynamical short-time scaling can be use€the new dynamic exponertis shown to be related to other
as an efficient alternative to analyze the critical properties otritical exponentsy=[d— B/v]/z. Dynamic heterogeneous
the disordered system. For example, in disordered magnetitature of avalanches, which is affected by the strength of
materials, dynamic measurements of Barkhausen avalancliésorder, is also observed.
can be carried out in short-time regime, and no particular
size of avalang:he is required. . ' ACKNOWLEDGMENTS
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