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Universality of dynamic scaling for avalanches in disordered Ising systems

Guang-Ping Zheng and Mo Li
Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Marylan

~Received 15 June 2001; revised manuscript received 1 July 2002; published 10 September 2002!

Dynamic scaling for driven disordered systems is investigated in some disordered Ising models. Using
Monte Carlo simulation, we find that avalanches in both random-field and random-bond Ising models follow
dynamic power-law scaling in short times, and the scaling relations are universal for the systems studied. The
probability distribution of the dynamic scaling exponentu is found to have two peaks centered atu1 andu2 .
The short-time dynamic exponentu1 is invariant and universal for all avalanches while the exponentu2

depends on the strength of disorder. The analytical result for the early stage evolution of breakdown process in
the random-field Ising model is obtained using mean-field approximation. Short-time dynamic scaling is also
confirmed.
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I. INTRODUCTION

Effect of disorder on phase transition has attracted a lo
attention in the past two decades@1–3#. Because defects
cause many local energy minima in the free energy landsc
of the system, they play important roles in phase transiti
and critical phenomena. For example, impurities can cha
the critical temperature and the critical behaviors, or co
pletely destroy the order phase, i.e., disorder-induced ph
transition @3#. When disorder is weak, the energy barrie
among local energy minima may be low and disorder can
treated as a perturbation to the configuration space. W
disorder is strong, the energy barriers are so high that
system is trapped in the metastable configurations. Ther
fluctuation cannot activate the system from the metasta
state in finite time scales. In this case, theoretical and si
lation treatments to the disorder-induced phase transition
critical phenomena have encountered tremendous difficu
@3#. To avoid these difficulties, driven disordered system
zero temperature, i.e., disordered system driven by an e
nal field, has been employed and extensively studied@4,5#.
Avalanches are usually observed during the field-driv
phase transition in disordered system. In some well-defi
models, such as random-field Ising models~RFIM!, the criti-
cal exponents obtained by scaling for avalanches are fo
to be consistent with those determined by thermal equi
rium critical scaling.

One of the well-known examples of avalanches in driv
disordered system is the Barkhausen jump during the m
netization reversal process. When disordered ferromag
are subjected to a slowly varying magnetic field, the a
lanches of local domain reversals form, which lead to
Barkhausen jumps in the magnetization curve. Experime
results have shown that the avalanches of domains with
ferent sizes are observed to obey scale invariance in sp
time, and frequency domain. The distribution of avalanc
sizes, the duration times and the power spectral density s
power-law behaviors@6–8#. In theoretical studies, some o
the disordered Ising models that are employed to describe
Barkhausen noise, have also demonstrated that the dist
tion of avalanches in hysteresis loop exhibits statistical s
ing behaviors when the strength of the disorder is tuned
1063-651X/2002/66~3!/036108~7!/$20.00 66 0361
f

pe
s
e
-
se

e
en
e
al
le
u-
nd
es
t

er-

n
d

nd
-

n
g-
ts
-
e
al
if-
ce,
e
w

he
u-
l-
to

the critical value. The scaling exponents are related to
critical exponents of disorder-driven phase transitions in
systems without applied field@10,11#. However, those scal
ing exponents strongly depend on disorder strengths, in
states, and driving rates; and there is no universal sca
relation for these static and dynamic exponents@12#. Further-
more, most of the experimental@6–8# and theoretical@9–11#
works on Barkhausen avalanches in disordered ferromag
have focused on their stationary or metastable behavi
e.g., the statistical distribution of signal strength~avalanche
size! and duration time~avalanche time! of Barkhausen
noises. There is little knowledge about the dynamical pr
erties of Barkhausen avalanches@12,13#. For example, how
avalanches evolve remains unknown and how the driv
rate of applied field affects the avalanche kinetics has
been clarified in most of the theoretical works@13#. The
question concerning the nature of the dynamics
Barkhausen avalanche process, especially whether diffe
avalanches have different dynamic behaviors or they co
be described by the same universal dynamic scaling, has
been clear so far.

In a recent study@14# on a two-dimensional~2D! RFIM,
we find that the largest avalanche grows with power law
time when the system parameters are tuned to their crit
values, i.e., at the critical point (Dc ,Hc) of the model, where
Dc is the critical disorder strength of the random field andHc
is the critical applied field that triggers the largest avalanc
@11#. When the strength of disorderD is varied belowDc ,
the largest avalanche is found to evolve in two distin
stages. In short times, it behaves like a diffusive proce
while at late times the avalanche shows nucleation
growth behavior that can be described by the kinetic the
of first-order phase transition@14#.

There are two important issues in the previous work t
remain unresolved for the dynamic scaling of avalanche
driven disordered systems. The first one is whether the
namical scaling is universal in higher dimensions and
systems with quenched-in disorder, such as the models
random interactions. Second, it is of great interest for us
look at the dynamic behavior of all avalanches other th
only the largest one. Specifically, we need to address
following question: Whether the dynamics of avalanches
©2002 The American Physical Society08-1
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW E66, 036108 ~2002!
all sizes is homogeneous or heterogeneous, i.e., whethe
avalanches evolve like the largest one.

These unanswered questions provide the major motiva
for this work. Our previous work gave a limited account
the effects of disorder on the dynamic process in a
random-field Ising model@14#. The purpose of this paper i
to give more general and more extensive answers to
aforementioned questions using different model systems
Monte Carlo simulations.

This paper is organized as follows. We shall briefly r
view model systems for driven disordered system and
dynamic scaling for avalanches in the following section.
Sec. III, we demonstrate through numerical simulations t
the dynamic scaling is universal in higher dimensions and
the disordered model systems in which the hyperscaling
lation is not valid@11#. In Sec. IV, we investigate the dy
namic heterogeneity of avalanches in the random-bond I
model ~RBIM!. In Sec. V, analytical results are obtained
using mean-field approximation to RFIM. The last secti
summarizes the results.

II. DYNAMIC SCALING FOR DRIVEN DISORDERED
SYSTEMS

We consider a coarse-grained Ising model with quenc
disorder,

Ĥ52(̂
i j &

Ji j SiSj2(
i

hiSi2H(
i

Si , ~1!

whereSi561 are spin variables and̂ij & denotes the sum
mation extending over all nearest-neighbor spins.H is a ho-
mogeneous external magnetic field;hi is an uncorrelated ran
dom field which has a Gaussian distribution;^hi&50 and
^h(x)h(x8)&52Dd(x2x8).

In this work, we consider two variations of the Isin
model represented by Eq.~1!: ~a! random-field Ising mode
and~b! random-bond Ising model. For the random-field Isi
model, we chooseJi j 5J, andhi is the random field as de
scribed above. For the random-bond Ising model, we cho
hi50. Ji j are the Gaussian random variables with the m
valueJ and standard derivationD. In both models,H andD
are in units ofJ. The temperatures in both random-field a
random-bond Ising systems described by Eq.~1! are kept at
zero.

In the system described by Eq.~1!, if the applied fieldH
~e.g., magnetic field! is swept between1` and2`, its con-
jugate order parameterM ~e.g., magnetization! does not vary
smoothly from11 to 21. Instead, many avalanche process
can be observed during the switching of order parame
There is a critical disorder strengthDc that characterizes thi
driven disordered system. WhenD.Dc , there are only
small avalanches; while atD<Dc , there exists an infinite
avalanche under the critical applied fieldHc . The equilib-
rium distributions of avalanches are found to obey
power-law scaling relations atD5Dc @9,11#,

P~s!;s2a,
03610
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P~t0!;t0
2b , ~2!

A~ f !; f 2c,

wheres andt0 are avalanche size and duration time resp
tively. A( f ) is the power spectral density of avalanche s
nal. a, b, andc are the scaling exponents. On the other ha
the critical scaling for the driven disordered system has
following relations@10#:

DM;~Dc2D !bn,
~3!

^t0&;~Dc2D !2nz,

whereDM is the avalanche size and^t0& is the duration time
of the largest avalanche during the switching process.

We need to point out that Eqs.~2! and ~3! are the results
from stationary or metastable scaling. The scaling is a
lyzed when the avalanches remain unchanged or metast
However, nonequilibrium dynamic scaling for avalanch
could be more suitable to describe the driven disordered
tem and can be derived from the finite-size scaling hypo
esis@15#. Based on this finite-size scaling relation, the tim
dependent avalanche jumpm(t)[@M (t)2Mc#/2 is shown
to satisfy the following relation:

m~L,t !;L2b/nF„L/j~ t !…, ~4!

where M (t)[^(SSi)/L
d& is the total magnetization, an

^¯& denotes average over the random-field configuratio
Mc is the magnetization at the critical point (Dc ,Hc). L is
the lattice size andj(t) is the nonequilibrium spatial corre
lation length of the flipped spins at timet. F is the scaling
function. From Eq.~4!, we found @14# that at the critical
point (Dc ,Hc), the dynamic evolution of the largest ava
lanche in short times obeys the following scaling relation

^s~ t !&;t @d2b/n#/z;tu ~5!

and

] ln^s~ t !&
]t U

r 50

;t1/nz, ~6!

wherer[(Dc2D)/Dc . s(t)[Ldm(t) is the avalanche size
b andn are the equilibrium critical exponents of the syste
z is the dynamical critical exponent andu is a new dynamic
exponent that also characterizes the dynamics of the sys

III. UNIVERSALITY OF DYNAMIC SCALING
FOR AVALANCHE EVOLUTION

Equations~5! and~6! are confirmed by the recent simula
tions of a 2D random-field Ising model@14#. The critical
exponentsb, n, z, and the critical valueDc obtained from the
dynamic scaling are found to be consistent with those de
mined from the stationary scaling relations@Eqs.~2! and~3!#.
The new dynamic exponentu is equal to@d2b/n#/z, or
1/snz @11#, where exponents is defined from the spanning
cluster. As it is known, the hyperscaling relationd2b/n
8-2
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51/sn, as well as possible disorder-driven phase transitio
are found to exist in 2D RFIM@11#. One of the questions tha
naturally arise from these results iswhether the dynamic
scaling observed in2D RFIM is universal in different models
of disordered systems where the hyperscaling relation d
not hold.

We believe that the dynamic scaling and scaling relat
u5@d2b/n#/z are universal for Ising systems with uncorr
lated impurities. The reasons are based on the following
guments. First, Eqs.~5! and~6! govern the dynamics of ava
lanche in short-time regime. At short times,j(t) is still small
compared withL and the spanning clusters or fractal-shap
avalanches have not formed yet. Then the avalanche
s(L,t) is scaled with system sizeLd, and thus has nothing to
do with the spanning clusters. Second, for nonequilibri
dynamic process, the finite-size scaling relation@Eq. ~4!#
may not necessarily lead to the hyperscaling relation.

To demonstrate the above conjecture that the dyna
scaling for avalanches in Ising-type driven disordered sys
is universal, we choose to study two different model syste

FIG. 1. Dynamic and stationary critical scaling for the large
avalanche in a three-dimensional random-field Ising model. Sys
size is L5128. ~a! Evolution of avalanches at different disord
strengths. The dashed line is the best power-law fit. The plots a
log-log scale.~b! The duration timê t0& of the largest avalanche
DM of the largest avalanche, and the initial magnetizationm0 at the
largest avalanche.
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a 3D random-field Ising model and a 2D random-bond Is
model. These systems provide the typical examples re
senting two scenarios for our questions. The 3D RFIM
known for not having the hyperscaling relation and 2
RBIM has different disordered nature, e.g., spin glass, co
pared with the RFIM.

Additional advantages can also be gained from these
model systems. Since the exponents and critical phenom
of these systems are investigated previously@10,11# using
stationary scaling relations@Eqs. ~2! and ~3!#, we can com-
pare these known results with those obtained from our
namic scaling. This direct comparison could provide an
ditional justification for the universality of the dynami
scaling in the two model systems.

A. Algorithms for simulation study

We use Monte Carlo simulations in our numerical stu
of the two model systems. Both systems are kept at z
temperature. The algorithms used in the current work
described below.

For the systems governed by Eq.~1!, all spins are updated
simultaneously. A spin will flip if its local fieldf i5SJi j Sj
1hi1H changes sign. The external field is decreased bydH
and then is fixed to drive the avalanches until the syst
reaches a metastable state. The varying rate of magnetic
can be measured bydH. If dH is fixed throughout the mag
netization reversal process,H is a linear varying field. IfdH
is adjusted to be the local field of the most unstable spinH
is a quasistatic driving field. Unless specified otherwise,
simulation results are obtained from the systems with in
nitely slow driving rate.

To speed up the simulation, a fast algorithm similar to t
sort-list algorithm@11# is used. This algorithm is not appli
cable to the 2D RBIM with Gaussian random bonds beca
of the possibility of antiferromagnetic exchange interactio
Physical quantities are averaged over 1000–50 000 confi
rations. The average depends on the system size. One
step, or one Monte Carlo step~MCS!, in the simulation is
defined as one attempt of all spin updates. When the driv

t
m

in

FIG. 2. Determination ofDc(`) and critical exponentn in 3D
RFIM. Dc(L) is the critical strength of disorder in a finite-siz
system. The solid line is a linear fit.
8-3
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field changes, the time is reset to zero.

B. Results

1. 3D random-field Ising model

Figure 1~a! shows the evolution of the largest avalanche
different disorder strengthD in the 3D RFIM. The best
power-law fit determines the critical valueDc(L) in the finite
system. Figure 1~b! shows the corresponding static critic
scaling @Eq. ~3!#. The critical valueDc(`) of the infinite
system can be determined from the relation

Dc~L !2Dc~`!;L21/n, ~7!

which is plotted in Fig. 2. The dynamic finite-size scaling f
the avalanche size is shown in Fig. 3.

From the dynamic scaling of the largest avalanche@Eqs.
~4!–~7!#, the critical exponentsb, n, z, and the critical value
Dc can be obtained. The values are listed in Table I.
compare these exponents andDc obtained from the dynamic
scaling with those determined from stationary scaling@Eqs.
~2! and~3!# in 3D RFIM. As shown by the results in Table
they are in fairly good agreement.

2. 2D random-bond Ising model

Figure 4 shows the evolution of the largest avalanche
different disorder strengthD in the 2D random-bond Ising

FIG. 3. Dynamic finite-size scaling for the largest avalanche
Dc52.16 in 3D RFIM. The symbols are rescaled by Eq.~4! with
H5Hc andD5Dc .
03610
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model. Exponentsb, n, z and the critical valueDc obtained
from the dynamic scaling for the 2D RBIM are listed
Table II. As shown in Fig. 5, they are consistent with tho
determined by stationary scaling@10#. From the above re-
sults, we can see that in both the 3D RFIM and 2D RBI
the scaling relation between the new dynamic exponenu
and other critical exponents,u5@d2b/n#/z, is indeed uni-
versal.

IV. DYNAMICAL HETEROGENEITY OF AVALANCHES

Equation~5! shows that the dynamics of the largest av
lanche obeys a power-law scaling relation. This conclusio
true at least at the initial stage. At the point (Dc , Hc), which
is the critical point of the disorder-induced phase transiti
the relaxation time or the duration time of the avalanc
becomes infinite. As shown earlier, this relation is valid f
the 2D RFIM @14#. It is also confirmed presently in the 3D
RFIM and 2D RBIM. Therefore, Eq.~5! describes the uni-
versal short-time dynamic scaling for the driven disorde
systems.

The avalanches in driven disordered system have diffe
sizes and duration times. For example, in magnetization
versal process, there are various Barkhausen jumps ca
by different sizes of domains. Since Eq.~5! is based on the
assumption that the avalanche occurs at the critical point

t
FIG. 4. The growth of the largest avalanche in a tw

dimensional random-bond Ising model~2D RBIM!; L51024. The
plots are in log-log scale. The dashed line is the best power-law
s and
TABLE I. The critical exponents for the disorder-driven phase transition in 3D RFIM. The exponent
Dc determined by different methods are listed for comparison.

Dc(`) 1/n b/n z u

Dynamic scaling 2.15860.005 1.160.1 0.0560.02 1.6860.03 1.7660.02
Equilibrium 2.1660.03 0.760.1 0.0260.02 1.69 1.76a

scaling~Ref. @11#!

Exact results
~Ref. @11#!

1 0

aThe value determined from 1/snz.
8-4
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TABLE II. The critical exponents in 2D RBIM determined by dynamical scaling and static scaling.

Dc(`) z b n u

Dynamic scaling 0.4060.01 1.360.1 0.0560.01 1.060.1 1.5060.02
Equilibrium 0.4460.03 1.260.1 0.06560.1 1.460.1

scaling~Ref. @10#!
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the relaxation time of short-time regime is large, one m
argue that the short-time dynamics and the exponentu are
not universal for those avalanches with small or finite si
and times. It is therefore interesting to find out what t
avalanches are ofall sizes.

To resolve this issue, we measure the dynamic sca
exponentu of each avalanche in 2D random-bond Isi
model. From the power-law relation, we can calculate
exponentu for an avalanche through the following relation

u5
ln s22 ln s1

ln Dt
, ~8!

whereDt5t22t1 , s2 and s1 are avalanche sizes at timet2
andt1 , respectively, in an avalanche process.t152 – 5 MCS
andt2 is taken to be 2t0/3. The valueu is measured for each
avalanche and is averaged over 104– 105 random bond con-
figurations.

Figure 6 is the histogram plot ofu at different values ofD.
It can be seen that the major peak position ofu shifts from a
small valueu1 to a larger valueu2 whenD decreases. This
behavior clearly indicates that there are two kinds of dyna
cal evolution mechanism. ForD not far belowDc , two evo-
lution processes coexist. We also find thatu1 does not
change whenD varies, whileu2 increases whenD decreases
These results are consistent with the two-stage kinetic
fracture process observed early in the 2D RFIM model s
tem @14#.

FIG. 5. Dynamic finite-size scaling for the largest avalanche
Dc50.41 in 2D RBIM. The symbols are rescaled by Eq.~4! with
H5Hc andD5Dc .
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To exclude the effect of distribution functionP(Ji j ) on
the distribution ofu, we chose an uniform distribution func
tion of P(Ji j ). Again the same characteristic of the distrib
tion P(u) is found. The results in Fig. 6 strongly suggest th
the driven disordered system is dynamically heterogene
at D,Dc for the avalanche evolution under homogeneo
external field. However, in the short-time regime or sm
spatial regions, the kinetics of avalanche is homogene
i.e., there exists a universal dynamic scaling exponentu1 that
is characteristic for the disordered systems.

V. DYNAMICS OF AVALANCHES IN MEAN-FIELD RFIM

Using finite-size scaling and Monte Carlo simulation
Sec. III, we found the universality of dynamic scaling f
avalanche process in some driven disordered systems,
2D and 3D RFIM and 2D RBIM. It is important to look a
the exact results for dynamic behavior of avalanches in so
solvable disordered models. In RFIM, the kinetics of av
lanche can be exactly solved using the mean-field appr
mation.

The single-spin-flip kinetics for a random-field Isin
model described by Eq.~1! can be described by the mast
equation

d

dt
P~$Sj%, t !

5(
j

@wj~2Sj !P~$2Sj%,t !2wj~Sj !P~$Sj%, t !#, ~9!

where P($Sj%, t) is the probability of state $Sj%
[$S1 , ..., Sj , ..., Sn% and $2Sj%[$S1 , ..., 2Sj , ..., Sn%

t
FIG. 6. The histogram plot of the distribution of exponentu at

different strengths of disorder in 2D RBIM;L51024.
8-5
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is the state generated by the flipping of spinSj in state$Sj%.
For detailed balance condition at finite temperatureT, the
transition rate iswj (Sj )5@12Sj f (Sj )#/2. f (Sj ) is a function
of the nearest neighbor of thej th spin and can be written a

f ~Sj !5tanhF S J(
i

Si1hi1H D Y kBTG . ~10!

For simplification, we assume that the random-field proba
ity distribution function is a bimodal function:

P~hj !5@d~hj2h0!1d~hj1h0!#/2, ~11!

where h0 is the strength of random field. Based on mea
field approximation, the thermal average magnetization^S& is
independent of sitej, and Eq.~9! leads to

d

dt
^Sj&52^Sj&1^ f ~Sj !&. ~12!

Since the observed magnetization can be written asm
5@^Sj&#, where@¯# denotes the average over the rando
field configurations, Eq.~12! therefore becomes

d

dt
m52m1

1

2 F tanhS Jm1h01H

kBT D1tanhS Jm2h01H

kBT D G .
~13!

It is well known that for H50 and without the random
fields, the mean-field Ising model has a second-order ph
transition. The presence of random field$hi% may introduce a
tricritical point to the phase diagram. To simplify the kineti
governed by Eq.~13!, we just consider the system that has
second-order phase transition whenH is not applied. The
applied field can drive the system to a metastable state be
the breakdown of the system, i.e., sign change ofm. We
assume that (Hs , ms) is the end point of the metastable sta
in the magnetization curve for a given temperatureT below
the critical temperature, or in other words, the spinodal po
The relation betweenHs and ms can be obtained from the
equilibrium relation in Eq.~13!,

ms5
1

2 F tanhS Jms1h01Hs

kBT D1tanhS Jms2h01Hs

kBT D G .
~14!

Let Dm(t)5m(t)2ms be the evolution of avalanche a
H5Hs . Since at the beginning,Dm(t) is small, Eq.~13! can
be written as

d

dt
Dm52Dm1Fsech2S Jms1Hs1h0

kBT D
1sech2S Jms1Hs2h0

kBT D GDm. ~15!

Therefore the evolution ofDm(t), which is the solution to
Eq. ~15!, can be written as
03610
l-

-

-

se

re

t.

Dm~ t !

DM
512exp~2t/t!, ~16!

where DM is the Barkhausen jump in the magnetizati
curve andt is the characteristic time:

t5F12sech2S Jms1Hs1h0

kBT D2sech2S Jms1Hs2h0

kBT D G21

.

~17!

Varying the strength of disorderh0 can maket→`, as
shown by Eq.~17!, which is consistent with the evolution o
the largest avalanche in the RFIM discussed in the sim
tion studies in Sec. III. Therefore whent→`, from Eq.~16!
we haveDm(t)}t in short times, or the breakdown proce
can be characterized by a power law in time with the ex
nentu51.

VI. DISCUSSION AND CONCLUSIONS

In our previous investigation in a 2D random-field Isin
model, we observed the scaling relation for the dynamic a
lanche process. The short-time dynamic shows unive
scaling for the largest or spanning avalanches@14#. However,
this study does not give the general answer to the quest
critical to our understanding of the nature of the dynam
processes in driven disordered systems. One of these q
tions is whether the scaling relation, as observed in the
RFIM, is universal in higher-dimensional systems, and a
for systems without hyperscaling. To resolve these issues
carried out Monte Carlo simulations on two separate mo
systems. One is a three-dimensional random-field Is
model and another is a two-dimensional random-bond Is
model.

The second question is whether or not the kinetics of
avalanche processes are homogeneous. Specifically, w
interested in finding out how avalanches ofall sizesbehave,
not just the largest or spanning one as we studied earlier@14#.

Our simulations on the avalanches in both systems,
3D RFIM and the 2D RBIM, show that the evolution drive
by the sweeping field indeed exhibits dynamic scalin
Moreover, the dynamics of avalanches is heterogeneous,
there are two different kinetics involved and the dynamics
affected by the disorder strengths. Two evolution mec
nisms contribute to the dynamic heterogeneity. At the init
stage of evolution, the avalanche is a result of diffusive p
cess, and the dynamic scaling exponent is small. Small a
lanches appear randomly throughout the system, and the
ponent is universal for avalanches at short times. For
avalanche with larger dynamic scaling exponent, its grow
process is a collective phenomenon. There is a strong co
lation among local events during such a process. The s
conclusions are drawn for the 2D RFIM from our early wo
@14#.

The dynamic scaling for avalanches inshort timesis in-
deed universal for the driven disordered systems. As sho
in the 3D RFIM and the 2D RBIM, the scaling relation
obeyed in three dimensions and in the system where
hyperscaling does not hold. In addition, the scaling expon
8-6



o
o
s
o

e
nc
la

a
o

n
ha

ort-
th
ling.
r
s

of

his

g

UNIVERSALITY OF DYNAMIC SCALING FOR . . . PHYSICAL REVIEW E 66, 036108 ~2002!
u is independent of the avalanche size.
One of the benefits from the universality is that the exp

nent u can serve as a fingerprint to characterize the dis
dered system. The dynamical short-time scaling can be u
as an efficient alternative to analyze the critical properties
the disordered system. For example, in disordered magn
materials, dynamic measurements of Barkhausen avala
can be carried out in short-time regime, and no particu
size of avalanche is required.

The dynamics of avalanches is also analyzed in a me
field RFIM at finite temperature. At short times, the size
the Barkhausen jump is proportional to time.

In conclusion, we demonstrate by numerical simulatio
of both random-field and random-bond Ising models t
y
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avalanches in driven disordered system have universal sh
time dynamic scaling. The dynamic scaling is valid for bo
high-dimensional systems and systems without hypersca
The new dynamic exponentu is shown to be related to othe
critical exponents:u5@d2b/n#/z. Dynamic heterogeneou
nature of avalanches, which is affected by the strength
disorder, is also observed.
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